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The unsteady dynamic problem of a massive strip-shaped punch placed on a semi-bounded medium is
considered. The punch is rigidly attached to the support, which is a laminate made of layers rigidly
attached to one another. The lowest layer is rigidly attached to a non-deformable foundation or half-
space. The punch is subject to an arbitrary load, the time dependence of which is specified. The
proposed efficient method of solving problems of this kind makes it possible to study in detail the
dynamics of the punch for various physical and geometric parameters of the supporting medium. The
behaviour of the punch in the presence of coupling (adhesion) is compared with the behaviour when
there is no friction in the contact domain. Numerical examples are considered. This study of unsteady
stationary contact problems is a continuation of [1, 2].3

1. FORMULATION OF THE PROBLEM

Suppose a rigid strip-shaped punch of width 24 with flat base rigidly attached to a semi-
bounded layered medium occupying the domain —~<x, y<o, z=<0 is acted upon by a load
of specified time dependence. The load, which is attached to the centre of mass of the punch,
can be decomposed into a force P(t)={F,(f), F,()} and moment M(t). The displacements
u’(®) = {w, w3} of the points of the punch can be expressed in the form

w=u, u=u+Qx

where «, and w, are the horizontal and vertical components of the displacement of the centre
of mass of the punch, which coincides with the origin (x=0, z=0) of the system of coordi-
nates, and where ¢ is the angle of rotation about the centre of mass of the punch.

The problem can be reduced to the simultaneous solution of the equations of motion of the
punch and the differential equations of motion of the medium under complete contact
conditions

w(@)=w(x,01), x<a

where w(x, z, t)={w,, w,} are the displacements of the points of the medium.
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Assuming that the system is initially at rest, we write the Laplace transforms of the equations
of motion of the punch

a.n
JIp*o=M(p)~R(p). R(p)= [q,(x)xdx

Here m is the mass of the punch, 7 is the moment of inertia about the horizontal axis passing
through the centre of mass of the punch, q(x)=1{g,, ¢,} is the vector representing the shear and
normal stresses under the punch, Q(p) and R(p) are the resultant contact pressure and the
moment of the normal contact stress c:omponent in the contact domain between the punch and

the HK‘»&HUHI, and P is uw Ldp!dLC uaumux‘nxdnun pdﬂ“ﬂﬂ@!t:!

On applying Fourier and Laplace integral transformations to the Lamé equations describing
the motion of the medinm and 10 the boundary conditions of the problem and fﬁhx;g the
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contact condition into account, it becomes necessary [3] to solve the following system of
integral equations of the first kind with respect to the unknown contact stresses (x)={g,, q,)

Kg= ? k(x-& p)g& pdE=u"(p), lxl<a (12)
-&
1 o o R
K(x, p)wﬁ“; [ K(a, pe™™) e da (13)

where o is the parameter of the Fourier transformation with respect to x.

Relationships {1.2) and (1.3} are fundamental in the study of unsteady interactions between a
punch and a semi-bounded medium with visco-elastic properties described within the
framework of the linear model of partially independent internal friction [1]. The Caﬁ'fficient of
internal friction {=0 corresponds to the case of an elastic mediuim, the integral (1.3) being
taken along a contour ¢ determined by the radiation conditions [3]. The matrix-valued
function K{o, p)=iiK, I} _ is determined by the type of medium. For semi-bounded layered
media it has the same form as in g)t()hiﬁmﬁ of steady oscillation with oscillation frequency w
changed to ip (i is the square root of minus one).

The properties of K,, for semi-bounded media are described in detail in [3]. It should be
noted that all functions X, have the same poles tp, (k=1, 2, ..., n) for all functions, X,,
being even and K, (m=n) odd functions of o with K, =—Knr:i(xi,{a}‘ The functions K,
have the following asymptotic representation a8 lal-—s e

K, =clal 1+0@™), Ky =bo1+0@™)], c>|bl 1.4)

The above properties of the kernels ensure that the original system of equations (1.2) is
uniquely solvable in L,(~a, @), A>1. Unigueness criteria were established in [3].

side
Kq=Ae™, A={A,A)

Then, by the linearity of the problem, the solution of the contact problem (1.2), (1.3) will be
given by the relation
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q(x)=uq' +u,q° +oq’ (2.1)

where q* are the solutions of the contact problems
1 0 0
1 2 3
= , K = . K =

3
Q' =qo(x.0,1,0), q%=qo(x0,01), q° =,% (x,0,0,1)

connected with gq, as follows:

The equations of motion (1.1) take the form
mP2“| =h "Qllul —Q,2u2 —Q13(P
mp*u, = Py - Qhuy — Quy — 030
Jp*9=M - Ry - R'u, - R%¢

a a
Q' = [ q*(x)dx, Rt= [g5(x)xdx, k=123

-a -a
Since the x-axis is the axis of symmetry of the problem, we have
(mp® +Qy + Q@ =R, (mp’+QD)u, =B, (Jp’ +R)9+Ru =M

Using the reciprocity theorem, it can be shown that Q] =R'. Then the displacement compon-
ents of the punch can be written as follows:

u, =[R(Jp? + R®)- M Q143

u, = By (mp® +0})”"

¢ =[M(mp* +0})- RQ} 1Ay

Ag = (mp? + 0 )Jp? + R*)—(QF)’

22)

The four functionals Q;, @7, Q:, R’ must obviously be determined in order to construct a
solution.

3. CONSTRUCTION OF THE SOLUTION OF THE CONTACT PROBLEM BY THE
FICTITIOUS DISSIPATION METHOD

Consider the system of integral equations (1.2)
Kyq) +Ki2q3 = Aie™™, Ky q? + Kpgd = Aje™ 3.1
udi +Rppq2 =4 T, Kygqy +Kpng; = Aze (3.1)

where q(x)={q), @} =q,(x, M, 4, A4,).

We will represent the matrix K(o)=K(a, p) as a product K(a)=S(o)I[I(a) and construct
S(o) in such a way that its matrix elements have no singularities on the real axis and preserve
the behaviour of K(a) (of the form (1.4)) at infinity. We choose
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5 is2 Bz (3.2)

S(w) = e
@ (B +02)%

—i32 S]
where

s, =ch(28y), s, =sh(28y), P*=c? -b?
v =arctg(./B), 8=n"arcth(b/c)

For the media under consideration ¢=1-v and b=(1-2v)/2, where v is Poisson’s ratio of
the upper layer. In this case the matrix elements of IT(a)=S"K retain all the singularities of
K(o) and have the form

m,, =(a®+BB2(K, s ~aLs,], m=1,2
I, =2+ B? )%B‘Z[le -K,, 507", m#n
We note that II,,.(o) are even functions at infinity and (o) reduces to the identity matrix

Iy, o,
—iolh, Ik,

Using the fictitious dissipation method, we seek a solution in the form

1 0

O 0 1

O—)+o0

qo(x)=q.(x)+¢(x) 3.3)

such that the relationships
0.(tp) = | gu(0edx=0, k=1...n
~a

are satisfied.
As the components of @(x) we take systems of d-functions with disjoint supports at x, =+ty,,
where the points y, divide the interval (0, a) into equal subintervals

2n
o(x)= E‘ Cyd(x - x) (34)

C, =|{C}, C?} being constants to be determined.
We introduce a new unknown vector-valued function t(x) by

) == ] T(@e " do, T(e)=M@Qu(0) (33)

Substituting (3.3) and (3.4) into (3.1) and taking (3.5) into account, we arrive at the following
system of integral equations

St= ‘f s(x—EWE)IE = Ae™ " - Zi, s(x-x,)Cy
-a k=1 3.6)

s(x) = 5‘— T Stwe " do.
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The matrix elements of S(a) are given by (3.2). Now the operator on the left-hand side of
(3.6) involves strong damping, the matrix-valued kernel § under the integral sign has no
singularities on the real axis, and it turns out that various methods for solving static problems
can be used to determine t(x). The methods of constructing the inverse operator S™, which
depend on properties of S(a), are described in [3-6].

Let t,(x)=x(x, N)A be the solution of (3.6) with right-hand side Ae™™, that is, let Ty(a)=
X(o, M)A in terms of Fourier-Laplace transforms. Then, due to the linearity of the problem,
the solution of (3.6) can be written in the form

T(o) = To(ox) - :g"l (1" + Z (0L, x;)1C, (3.7)
t(x) = ty(x) —‘P(x)——z-% :Enl £Z(a, 1,)C e ™ do (3.8)
2(@,x) =5 I8 @K () -SIS(X @ e (39)
From (3.5) we find that
0.0 = | Qu@e™da, Q,(@)=1M"@)T(®) (3.10)

-a

By the fictitious dissipation method, in order that q,(x) be in L, and have support only in
[-a, a], the relationships

T(#E,)=0, k=1,...,n (3.11)

must be satisfied, &, being the poles of the inverse matrix I1'(ct), the same for all elements
IT;'. The relationships (3.11) constitute an algebraic system of 4n equations from which to
determine the 4n unknowns C,, C? (k=1,...,2n).

Using (3.3), (3.4), (3.10), (3.7) and (3.8), we obtain the desired solution of the contact
problem in the form

qo(x)= {x(x,n) + ﬁ jar(a)- I)X(a,n)e‘i“‘da}A -

2n , ,
- ﬁ kzl[ JI Y (@) Z (o, x, e " S dou+ [ (I~ (o) - I)e"“(""")da]ck (3.12)
=l Lo g
and, correspondingly
2n ,
Qo () =M ()T () + z C,e' ™ (3.13)

To construct t,(x) we use the factorization method, which enables us to obtain a very simple
representation of the solution (3.6) as a degenerate component and a boundary layer.

A commutative factorization of the matrix-valued function S(a) can be realized explicitly
according to the general theorems [7]. In this case the contour ¢ coincides with the real axis
and

S(a) =S, (0)S_(ox) =S_(a)S, (a)

st isE
PR

S.(0)=B/2(BFiay %[
-85 £
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st = (BF i)t + (BFio)™; st = (BFio)*™® - (BF i)™

Using the factorization method, one can reduce the solution of the system of integral
equations (3.6) to the solution of a system of equations of the second kind with a completely
continuous operator of the form

X(2) =~ = [§7 (@[S (@) ¥ (@) 2% + (oo | 2%
21 o o+2z
(3.14)
Y(2) = - =1 [S7 (@)IS, (~0)X(c)e ™% + F(~0r)e %] 2%
2Ri s o+z
F={F,F}, F(0)=2rA80-n)
X={X,,X;}, Y={}.5}

The vector-valued functions X (o) and Y(a) are regular below ¢ and decay at least exponen-
tially there [8].
The vector-valued function t,(x) has the form

to(x) = 51; (57 (@)F(e) + 87 () X(~a)e™® +87 (@)Y ()™ Je " doy (3.15)
L]

Neglecting small integral terms, one can represent the approximate solution of the system of
integral equations (3.14) in the form

a ina
¢ . Y()=iST'mAE— (3.16)

..in
=gl
X(2)=iS; (WA — pp

Substituting (3.16) into (3.15), we obtain the representation

to(x) = X(x.MA
X(x1) = (-[G(x M+ GT (—x,~mI(B* + N2 Y2 (2B?) ™ +87 (e ™
G, -iG,
iG, G

G(x,n)="

Gyp =T~ (v)TIv,, (B+in)a—x)e’™0 £ T (v)TTv,, (B+in)Xa- x)le”2¥0

Vl_z = —% ¥ i5, Yo = arctg(‘l’] / B)

The expression for G,, can be expressed as

Gy 2 =2512(N) - wy 2 (x, M) - Oy 2(xM) 3.17)
Wiz (%, 1) = e2¥om, (v5,1,x) £ e7¥0m, (v, 7, x)

G5 (x, 1) = e2¥00(v,, 1, ) £ e 22¥00(v;, M, X)

n,(eM,x) =T (e + Dyl + 1 (B+in)a-x)I6(e,n,x) =

=T (e+De PV [(B+in)a- o)

Here I'(x), y(e, x) and I'(e, x) are the complete and incomplete Euler gamma-function,
respectively, and transposition is denoted by the index T.
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It can be seen from (3.17) that in the contact problem with coupling the solution contains an
oscillatory singularity of the form (azx)™'** on the edge of the punch.
The Fourier transform T,(a) of the vector-valued function t,(x) in the interval (—a, @) has
the form
Ty (o) = X(a, MDA
X (o, m) = [2iB* (0~ )T {e“* VR, ) - ¢ “*"VRT (-0, -m)}

r In
Rem=| '

—-ir, n
n,=(B+io) " (B- i) 2 n(v,, )2 (B+ia) 2 (B-n) " n(v,,0)
(B2 + 2V [eon(vy, —m) £ € ¥0n(v,,-1) - 25,

(e, o) = yle +1,2a(B+ i)l (€ +1) = &, (€, 01, —a)

We can obtain the final formulae from which to compute the shear and normal stresses
under the punch by substituting the expressions for t,(x), x(x,m) and X (o, 1) into the integral
representation (3.12) of the solution. After multiplying the matrices and some reduction one
can evaluate the integrals (3.9) by residues, since the integrands decay exponentially in the
lower half-plane and have no branching points there. The remaining integrals can be evaluated
from the formulae of the operational calculus.

Omitting the computations, we shall present the general form of the approximate solution of
the system of equations

Qo (x) = {-267K~ M)+ (B + )2 V(x,m) + V" (=x,-m)] +

+e @D (B in) $ M(E,xm+ e (Brm) 3 M‘(é,,—x,—n)}Ae‘“"(2l32)“ +
=1 I=1

+ d % i B+ipj l/2[-N( N*
9 ie y + Py — y—
2 k=1 | j=t1 B—ipj Pjs X x) (Pj Xy, —X)]+

=

+ ' [Y(gl’pj’xk'x)"'Y‘(E.nl’pj’—xkv_x)]}ck

‘H'Ma

11
Vix,n) =" () W(x,m)+0(x,n)

M(E, x,m) = B(-§)E'(-§,x,m)e "D (m + &)™ ~ BE)E(E, x,me* 2 (n- &)~
N(x, y,x) = eix(a—y)+ix(a—x)A(_K)a(x’ X)

E'(§,x,n)=b(&n) - EE,x,n)

Y(& %, y,x) = ¢V [B(-E)A(-K)E™ (<&, x, K)e B (E - x)! -
~BE)A(-KE(E, x, k)e ) (—x - &)™

A(p;)=ResIl(a), B(;)= R%s (o)
a=pj a=§;

w  —iw c —ic
W(x,n)=ﬂ.l 2"' o= " 2
w, W 06, O
e —ie) b -ib,
EE, x,x)={ . , b(o,m)=
(& x,%) “wz e1” (o,m) ,ibz b,

€,2(8x M) =TV, EMm, (v5, 6, x) £ 7(v,, &, MR, (v;,§, x)
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(e, & n)= (%f—:%) y by y(a,m)=1(vy,0,n) £ T(vy,00M)

System (3.11) from which to determine C, takes the form
2n
kz] f(iél,xk)ck =X(i§l,n)A, l=1,...,n

The Fourier transform Q(a, n) given by (3.13) can be determined from the simple formula

2n
Qo) = m! (a){X(a, mMA - k2-:1 f(a, x, )Ck} (3.18)

f(o, x) = [“F(a, x) + e "F* (-ot, - x)]/ 2
M ipj(a-x)

e
F(o,x)= El W A(-p;)b(a, p;)

The asterisk means that the skew-diagonal matrix elements depending on (-x) must be
multiplied by (-1).

4. DETERMINATION OF THE DISPLACEMENTS OF THE POINTS OF THE PUNCH

It is obvious that the functionals Q;, Q;, Q?, R’ are connected with the constructed solution
Q, () =Q,(a, n, A, A,) given by (3.18) by the following relationships

20
0l =000.010; 0} =080,00,1; R =2% (00,0
do.on
.00} 300
o} =;-%-(o,o,o,1)= —i —5:!2—(0,0,1,0)

The unknown functionals in (2.2) are therefore determined and, applying an inverse Laplace
transformation, we obtain the displacements of the centre of mass and the rotation angle of the
punch

e+ioce 1 €+foo

u(t)=§'1_- | w(peP'dt o)=—— | o(p)e”d:, £>0

g—joo 2 €—ico

The physical conditions of the problem imply that the integrand has no roots in the right
half-plane Rep>0 and the integral along a straight line parallel to the imaginary axis can be
replaced by the integral along the imaginary axis. Substituting p=—iw, the integral of the
inverse Laplace transform can therefore be reduced to the Fourier integral

u(t)=-—

ale

Tlm u(io)sinwtdw, ()= —-12; { Im @(iw)sin ¢ do 4.1)
0 0

These integrals can be computed using Filon’s method [8].

To compute the reaction Q (¢) of the base, the torque R(z), and the contact stresses q(x, ¢) it is
necessary to replace the integrand in (4.1) by Q(p), R(p), or q(x, p), respectively. Then q(x, 1)
can be determined from (2.1), and

Q(P) =0 +00}, 0 (p)=u,03
R(p)=wQ +OR® =R + @R’
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5. THE INFLUENCE FUNCTION FOR A MULTILAYER MEDIUM IN A HALF-SPACE

A method of constructing the influence function K(a, B, z, ®) for a multilayer medium
rigidly attached to a non-deformable base in three dimensions has been proposed in [2]. An
advantage of this method is that it makes it possible to study unsteady problems with any
number of layers. The Fourier transform of the displacement vector w(z)={w,, w,, w,} of the
points of the medium can be obtained in the form (o and P are the parameters of the
transform)

w(z) = K(0,B,2,0)q0, K(a,B,z,0) = (-1)) "' (A(z;) - B(z, )F; A(=h, ) X
X M F ARy Ty
FN = B(—hN), Fk = B(—hk)—.gkA(_hk'H)+ng(hk+l )Fk—*l'lA(hki-l ), k= 1,2,...,N"'1

k
Z=Zk“22 h,'+hk, k=1,2,...,N.
i=1

where A, and p, are the half-thickness and the Lamé parameter of the kth layer, g, =n,/p,.,,
and q,={q,, q,, ¢} is the surface load. The matrices B(z) and A(z) are given in [2].

We can obtain the solution for a medium rigidly attached to an elastic half-space by letting
the thickness of the lowest layer tend to . By changing the system of coordinates to
Z¥ =z, —h, in the lowest layer and taking the limit, we get

Fy=0, Fy_=B(-hy_)-gy.1AT(0)
F, =B(~h) - 8 Al )+ 8B )P A(=Ry ) k=1,2,...,N-2
2=z, =235 b +h, k=12,.,N-1
z=7"-23¥'h, k=N
oM +B’L of[M-L] -iaN,
A”(z)=[aBM-L] B*M+a’L -iBN,
ioN, iBN, R |
_20;
N

M [-A£(0,2) +7£(632)), L=—2— f(6,2)

0,2
2
Ny = < [Yf(01,22) - 0,0,f(5,,2)].
;207 .

R="Z [-Nf(00+1f(010), f(2)=ch(z)+sh(z)=e?

A =[y* -2\20,0,], M =a+p?, y=rr-1%6}

of =N -0}, 6] =ey0], 03 =py0’/py, Ey=(1-2vy)/(2-2Vy)

In particular, for a layer rigidly attached to the half-space (—o=<x, y<w, z=<0), we obtain
the following displacements:
in the layer
w(2)=[A(z+h)-Bz+h)F A=h)lgon;"

in the half-space

w(z) =-A"(z +2k)F'A(=h)qou;', F, =B(-h)-gA™(0)
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6 NUMERICAL ANALYSIS OF THE PROBLEM

A numerical analysis was carried out for a strip-shaped punch rigidly attached to a
multilayer medium.

Figure 1 shows the effect of coupling forces within the contact domain on the behaviour of a
punch in contact with a layer of thickness H =0.5 and subjected to a force Py(t)=te™. The
solid line corresponds to the problem with coupling (adhesion) within the contact domain,
while the dashed line corresponds to the problem without friction. It can be seen from Fig. 1
that coupling forces result in a slightly smaller maximum displacement of the punch as
compared with the problem without friction.

For systems in which the thickness of the layer is comparable with the dimensions of the
punch the effect of coupling forces within the contact domain on the vertical displacements of
the punch turns out to be small. We observe that the basic patterns in the behaviour of the
punch remain the same for media with more complex propertiies {layered ones).

The time dependence of the angle of rotation and the horizontal displacement of the punch
subjected to the moment M({t)= H(t)~ H(t-2) is shown in Fig. 2. Curve 1 corresponds to the
horizontal displacement and curve 2 to the angle of rotation of the punch. In the case when the
punch is acted upon by a horizontal load the behaviour of w1, and ¢ is similar to that shown in
Fig. 2, but, the horizontal displacement of the punch predominates. All quantities are
presented in dimensionless form: the displacements relative to the half-thickness a of the
punch, the load to the rigidity u of the layer, and the time to {(p/p)*a, Moreover, v=03,
{=0.2 is the coefficient of friction of the medium, and M =1 is the mass of the punch.

We wish to express our thanks to L 1. Vorovich for his interest and for useful remarks.
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