
Pergamon 
J. Appl. Maths Me&, Vol. 58, No. 2, pp. X3-333,1994 

Copyright Q 1994 Elsevler Science Ltd 
Printed in Great Britain. All rights reserved 

0021-8928/94 s24.00+ 0.00 

THE SOLUTION OF UNSTEADY CONTACT 
PROBLEMS IN THE PRESENCE OF 

COUPLING FORCES? 

0. D. PRYAKHINA and M. R. FREIGEIT 

Rostov-on-Don 

(Received 11 May 1993) 

The unsteady dynamic problem of a massive strip-shaped punch placed on a semi-bounded medium is 

considered. The punch is rigidly attached to the support, which is a laminate made of layers rigidly 

attached to one another. The lowest layer is rigidly attached to a non-deformable foundation or half - 

space. The punch is subject to an arbitrary load, the time dependence of which is specified. The 

proposed efficient method of solving problems of this kind makes it possible to study in detail the 

dynamics of the punch for various physical and geometric parameters of the supporting medium. The 

behaviour of the punch in the presence of coupling (adhesion) is compared with the behaviour when 

there is no friction in the contact domain. Numerical examples are considered. This study of unsteady 

stationary contact problems is a continuation of [l, 2].$ 

1. FORMULATION OF THE PROBLEM 

Suppose a rigid strip-shaped punch of width 2a with flat base rigidly attached to a semi- 
bounded layered medium occupying the domain --oo < X, y G 00, z G 0 is acted upon by a load 
of specified time dependence. The load, which is attached to the centre of mass of the punch, 
can be decomposed into a force P(t) ={P,(t), P&t)) and moment M(t). The displacements 
u’(t) = (4, u,“) of the points of the punch can be expressed in the form 

Ul O=* 19 u2 o=u2+cpx 

where u, and u, are the horizontal and vertical components of the displacement of the centre 
of mass of the punch, which coincides with the origin (X = 0, z= 0) of the system of coordi- 
nates, and where cp is the angle of rotation about the centre of mass of the punch. 

The problem can be reduced to the simultaneous solution of the equations of motion of the 
punch and the differential equations of motion of the medium under complete contact 
conditions 

uO(t)= w(x,O,t), xs a 

where w(x, z, t) = (ivl, WJ are the displacements of the points of the medium. 
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Assuming that the system is initially at rest, we write the Laplace transforms of the equations 

throu@~ the centre of mass of the pur~ch, 4(x) = &, +J is the vector representing the shear and 
normal Wesses under the punch, Q(p) and R(p) are the resultant contact pressure and the 
moment of the normal centact stress component in the contact domain between the punch and 
the medium, and p is the Laplace transfo~ation pyrometer. 

Ora ~p~~~g Fourier and LapLace integral tran~~~a~~~s to the Lam6 eq~~ions ~~b~~ 
she ~otj~~ of the rne~~~rn and bo t&e ~~u~~~~ ~~~~~~~~~ d tit? pm&m and taking the 
contact condition into account, it b,ecomes necessary [3f to solve the following system of 
integral equations of the first kind with respect to the unknown contact stresses 4(x) = [qI, q2) 

~e~at~o~h~~ (1_2) and fl.3) are f~~~~~nta~ in *he study of eatery ~n~~t~~~s 
punch &nd a semi-bounded medium with v&o-elastic properties described within the 
framework of the linear model of partinlly independent internal friction [l]. The coefficient of 
internal friction [ = 0 corresponds to the case of an elastic medium, the integral (1.3) being 
taken along a contour (3 determined by the radiation conditiorxs [3& The matrix-vaIued 
fm-zctior~ K& &=iI KM k&=x is determined by the type of rn~~~~ Rx ~rn~-~~~ Layered 
media iz has &e same furm as in ~r~~erns of steady ~~~~t~on with o~~~~t~o~ ~~quen~y r8 
chanpd to ip (i is the square root of mmus one). 

The properties of .&,, for semi-bounded media are described in, detail in [3j, It should be 
noted that all functions &,,= have the same poles kpk (k =l, 2, . . 1 ) n) for all functions, K, 
being evea and K,, fm+e) odd functions of a with & =-Kzl = ~~~~~_ The f~~~~ons K, 
have the fo~~o~~g as~m~to~~ representation as I a 1-3 w 

The above properties of the kern& ensure that the original system of equintions (1.2) is 
uniquely solyabie in &(+, a)_ it > 2, uniqueness criteria were estab~s~~ in [3]. 

Let Q&X_ g, AZ5 A,) be the sdutiotr of the system of equations (3.2) with kr%wt~ right-hand 
Side 

Thenr by the linearity of the problem, the solution of the contact probiem (1.2), (13) wih be 
given by the relation 
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(2.1) 

where q’ are the solutions of the contact problems 

Kq’ =(;), Kq2 =(;), Kq3 =(;) 

connected with q. as follows: 

q’ =qo(x,O,l,O), q2 =q&,O,O,1), q3 = i% (X,0,0,1) 

The equations of motion (1.1) take the form 

mp2u, = 4 - Qiul - Q& - Q?(P 

mp2u2 = P2 - Q$q - Q& - Q$P 

.lp2cg = M - R’u, - R’u, - R3q 

Qk = i qk(xW, R’ = i q{(x)xdx, k=l,2,3 
--(I --(1 

Since the x-axis is the axis of symmetry of the problem, we have 

(mp2+Qtt)u,+Q&=e, (mp2+Qi)u2 =4. (Jp2+R3)(9+R’ut =M 

Using the reciprocity theorem, it can be shown that Q: = R’. Then the displacement compon- 
ents of the punch can be written as follows: 

u, =[r;(Jp2 + R3)- MQ:lA_d 

u2 = P2 ( mp2 + Q; )-’ 

cp=[M(mp2+Q:)-4Q:1A? 

A,, =(mp2 +Q:)(Jp2 + R3)-<Qf)’ 

(2.2) 

The four functionals Q:, Q:, Q,‘, R3 must obviously be determined in order to construct a 
solution. 

3. CONSTRUCTION OF THE SOLUTION OF THE CONTACT PROBLEM BY THE 
FICTITIOUS DISSIPATION METHOD 

Consider the system of integral equations (1.2) 

4 d + K,,q; = he -iv, K,,qf + K22q! = A2emiqx (3.1) 

where %(x) = Is,“, q,“l= q&, rl, 4, A,). 
We will represent the matrix K(a) = K(a, p) as a product K(a)= S(a)lI(a) and construct 

S(a) in such a way that its matrix elements have no singularities on the real axis and preserve 
the behaviour of K(a) (of the form (1.4)) at infinity. We choose 
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qa) = s1 ‘9 P2 H *II -is2 sl (82 +a2)K (3.2) 

where 

s, = ch(26v), s2 = sh(26v), p4 = c2 - b2 

w = arctg(o / B), 6 = 12-l arcth(b / c) 

For the media under consideration c = 1 -v and 6 = (1 - 2v)/ 2, where v is Poisson’s ratio of 
the upper layer. In this case the matrix elements of II(a) = S”K retain all the singularities of 
K(a) and have the form 

Q,,, =(a2+B2)Kp-2[&,,,,s,-aLs2], 

r7, =(a2 +B2)HfY2[Ls, -Knns2a-'1, 

We note that Q,,,(a) are even functions at infinity and II(a) 

m=l,2 

m+n 

reduces to the identity matrix 

0 

1 
II(a)= 

II 

q1 ia 

II - I/ 

1 

-ian;, 42 a*+- 0 

Using the fictitious dissipation method, we seek a solution in the form 

such that the relationships 

(3.3) 

a(fp,) = 7 q,(~)e*~%ix = 0, k = l,..., n 
-* 

are satisfied. 
As the components of (p<n) we take systems of g-functions with disjoint supports at X, = +y,, 

where the points y, divide the interval (0, a) into equal subintervals 

q(x)= g C&6(X--X,) 
&=I 

(3.4) 

C, = (CL, Ci} being constants to be determined. 
We introduce a new unknown vector-valued function t(x) by 

t(x)=L - 21c _j T(a)e-imda, T(a)= WcOQda) (3.5) 

Substituting (3.3) and (3.4) into (3.1) and taking (3.5) into account, we arrive at the following 
system of integral equations 

St I 1 s(x - ~)t(Qd~ = AeTiw 
--o 

- &!, s(x -x& )c, 

(3.6) 

s(x) = J- 2n _TS(a)e-i'uda 
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The matrix elements of S(o) are given by (3.2). Now the operator on the left-hand side of 
(3.6) involves strong damping, the matrix-valued kernel S under the integral sign has no 
singularities on the real axis, and it turns out that various methods for solving static problems 
can be used to determine t(x). The methods of constructing the inverse operator S-‘, which 
depend on properties of S(a), are described in [36]. 

Let to(x) = x(x, q)A be the solution of (3.6) with right-hand side Ae-*, that is, let T,(a) = 
X(a, q)A in terms of Fourier-Laplace transforms. Then, due to the linearity of the problem, 
the solution of (3.6) can be written in the form 

T(a) = T,(a)- 5 [Ieiaxk + Z(a.xk)lCk 
k=l 

t(x)= to(x)-q(x)-- *, k!, jZ(a,x,)C,e-‘axda 
0 

(3.7) 

(3.8) 

Z(a,x) = k jS-'(a)[K(q) -S(rW(a)X(a, q)e-iqx’xdrl 
a 

(3.9 

From (3.5) we find that 

q*(x)= ! Qdak-'" da, Q,(a)=II-'(a)T(a) 
-0 

(3.10) 

By the fictitious dissipation method, in order that q,(x) be in L, and have support only in 
[-a, a], the relationships 

T(fkk) = 0, k = l,...,n (3.11) 

must be satisfied, & being the poles of the inverse matrix II-'(a), the same for all elements 
II,‘. The relationships (3.11) constitute an algebraic system of 4n equations from which to 
determine the 4n unknowns C:, C,Z (k= 1, . . . ,2n). 

Using (3.3) (3.4), (3.10), (3.7) and (3.8), we obtain the desired solution of the contact 
problem in the form 

90(x) = X(x.ll)+~l(n-l(a)-I)X(a,~)~-i~~a 
0 

jn-‘(a)z(a,xk)e-‘“da+ ~(n-‘(a)-I)e-ia(x-y)da ck 1 (3.12) 
2lc k=l La 

and, correspondingly 

u J 

Qo(a)=II-'(a)T(a)+ 2 Ckeimk 
k=l 

(3.13) 

To construct t,,(x) we use the factorization method, which enables us to obtain a very simple 
representation of the solution (3.6) as a degenerate component and a boundary layer. 

A commutative factorization of the matrix-valued function S(a) can be realized explicitly 
according to the general theorems [7]. In this case the contour CJ coincides with the real axis 
and 

SW = S, (a)s_ (a) = S_ (aP+ (a) 
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sf =(BTia)*i’+(BTia)T’S; s: =(Biia)*i”-(Biia)ris 

Using the factorization method, one can reduce the solution of the system of integral 
equations (3.6) to the solution of a system of equations of the second kind with a completely 
continuous operator of the form 

X(z) = -& jS;'(a)[S_(a)Y(a)e-"'" +F(a)eeka]& 
u a+2 

Y(Z) = -& jSI’(a)[S+(-a)X(a)e-2iua + F(-a)e-iaa]dol 
0 a+z 

(3.14) 

F=Fi,F,1, 4 (a) = 21cAk6(a - q) 

X = IX,,X,], Y=Iy,,Y,} 

The vector-valued functions X(a) and Y(a) are regular below CT and decay at least exponen- 
tially there [8]. 

The vector-valued function t,(x) has the form 

to (xl = &~~-l(a)F(a)+SI’(a)X(-a)e’a +S;‘(a)Y(a)e-i”a ]e-‘imda 

Neglecting small integral terms, one can represent the approximate solution of the system of 
integral equations (3.14) in the form 

-iqa 

X(z) = iS;‘(r\)AL; 
iqo 

Y(z) = iSI’(lj)Ac 
ll+z Z-rl 

Substituting (3.16) into (3.15), we obtain the representation 

to(x) = x(x, q)A 

x(x.TJ)=(-[G(x,~)+G~(-x,-~)](B~ +?j2$(2p2)-l eS1(~)}ePiW 

G 1,2 =~-1(v,)~[v2,(B+iq)(u-~)]e25~o *P(vl)IJvI,(B+iq)(a-x)]e-2*vo 

v1.2 =-J$7-i& y. =arctg(lJ/B) 

The expression for GI,* can be expressed as 

G,,, = 2q.2 @I) - y,,(x, 11) - %,2(X, 11) 

Wl,2 (x,q) = e28voxr (v, ,q, x) f e -2woox~(v,,I),x) 

q2 (x, q) = e26”Y0W2, q, x) f eShoB(vlI 9. x) 

xy (e,q, X) = r-l (E + I)@ + 1, (B + iq)(a - x)lW, q, x) = 

= r-ICE + l)e-( a+W+x)[(B + iq)(a _ x)]” 

(3.16) 

(3.17) 

Here T(x), y(&, x) and r( E, x) are the complete and incomplete Euler gamma-function, 
respectively, and transposition is denoted by the index T. 
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It can be seen from (3.17) that in the contact problem with coupling the solution contains an 
oscillatory singularity of the form (u+x)-~‘~‘~~ on the edge of the punch. 

The Fourier transform T,(a) of the vector-valued function to(x) in the interval (-a, a) has 
the form 

T,(a) = X(a,NA 

~(a,~) = [~$*(a - q)]-’ {ei4(a-“)R(a,q) - e-“(a-q)RT(-a,-q)] 

q,* ~(~+i~)~V1(B-i~)~V2A(V,,OI)+(B+i~)~v2(B-~)~V’~(V2,~)~ 

+@ +&+P~o - a(v, , -rl) f e -2sv%(v2 ( -q) - 2S,,* 3 

7c(&,ct) = y[&+1,2a(B+~cr)lr-‘(e+l~=It,~E,ff,-a~ 

We can obtain the final formulae from which to compute the shear and normal stresses 
under the punch by substituting the expressions for t,,(x), x(x, q) and X(a, q) into the integral 
representation (3.12) of the solution. After multiplying the matrices and some reduction one 
can evaluate the integrals (3.9) by residues, since the integrands decay exponentially in the 
lower half-plane and have no branching points there. The remaining integrals can be evaluated 
from the formulae of the operational calculus. 

Omitting the computations, we shall present the general form of the approximate solution of 
the system of equations 

qo(x)=(-2P2K-‘(rl)+(B2 +q*)“*[V(x,q)+V*(-x,-q)]+ 

+e-iW-X)(~-iq) i M(~,,~,q)+e~~(“+~)(B+iq)~ M*(51,-x,-q) 
I=1 I=1 

112 

~(Pj,x,,x)+N*(Pj,-x,,-x)l+ 

vtx,q1)= lmwWl1)+~tX,q1) 
M(c,x,q) = B(-~)E’(-&x,q)e-it(4-x’(q +&-I - B(QE(~,x,q)eiS’“-“‘(rl -Q-’ 

N(K, Y, x) = e ir(4_Y)+ilc(4_x)A(_K)a(X, K) 

E1(5,x.rl)=b(S,11)-E(S,x,tl) 

Y&K, y,x) = eiK(4-Y)[B(-~)A(-~)Z-1(-~,~, ~)e-‘~(“-~)(~ - K)-’ - 

- B(&i(-K)E(~,x,K)eiS’4-X’(-K - if,)-‘] 
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System (3.11) from which to determine C, takes the form 

? f(&,x,)Ck =X(*E,&A, I=1 ,..., n 
k=l 

The Fourier transform Q(a, q) given by (3.13) can be determined from the simple formula 

The asterisk means 
multiplied by (-1). 

f(a,x)=[e’“F(a,x)+e-iWF*(-a,-x)]/2 

F(a,x) = 2 
,iPj(a-x) 

j=l 2Pj(Pj +a) 
A(-Pj NW Pi) 

(3.18) 

that the skew-diagonal matrix elements depending on (-x) must be 

4. DETERMINATION OF THE DISPLACEMENTS OF THE POINTS OF THE PUNCH 

It is obvious that the functionals Q:, Q:, Q,‘, R3 are connected with the constructed solution 
QJa) 5 Q,,(a, 9, A,, A,) given by (3.18) by the following relationships 

a2 O 
Q; =Q~COJM.O>; Q: =Q$W,O,U R3 =&(O.O,O,I) 

Q;=*@-& rP(O,O,O,l)=-is(O 0 IO) 
aa “’ 

The unknown functionals in (2.2) are therefore determined and, applying an inverse Laplace 
transformation, we obtain the displacements of the centre of mass and the rotation angle of the 
punch 

u(r) = -L 
E+i= 

2Ri _I u(p)eP’dt W 
E i- 

=kE],- cp(p)eP’dr, E>O 
E I- 

The physical conditions of the problem imply that the integrand has no roots in the right 
half-plane Rep>0 and the integral along a straight line parallel to the imaginary axis can be 
replaced by the integral along the imaginary axis. Substituting p=-iw, the integral of the 
inverse Laplace transform can therefore be reduced to the.Fourier integral 

u(t) = -2 ~I*u(io)sinotdo, q(r)=-: ~Imcp(im)sinotdo 
x0 

(4.1) 

These integrals can be computed using Filon’s method [S]. 
To compute the reaction Q(t) of the base, the torque R(r), and the contact stresses q(x, t) it is 

necessary to replace the integrand in (4.1) by Q(p), R(p), or q (x, p), respectively. Then q(x, t) 
can be determined from (2.1) and 

QI(P) = u,Q: +vQ:, QAP) = %Q: 
R(p)=u,Q; +qR3 =u,R’ +(pR3 
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5. THE INFLUENCE FUNCTION FOR A MULTILAYER MEDIUM IN A HALF-SPACE 

A method of constructing the influence function K (a, p, z, co) for a multilayer medium 
rigidly attached to a non-deformable base in three dimensions has been proposed in [2]. An 
advantage of this method is that it makes it possible to study unsteady problems with any 
number of layers. The Fourier transform of the displacement vector w(z) = (w,, w,, w3} of the 
points of the medium can be obtained in the form (a and (3 are the parameters of the 
transform) 

w(z) = K(o,P,z,w)q,, K(a$, z,o> = (-lf -’ (A(zk) - B(zk )F;' A(-hk )) x 

X l’lf=,_,Fi-‘A(-hi) / pk 

Fiv =B(-h,), Fk =B(-h,)-g,A(-hk+,)+gkB(hk+,)F~~,A(hk+l), k=1,2,...,N-1 

Z=Zt-2~ hi+hk, k=l,2 ,..., N. 
i=l 

where h, and pL are the half-thickness and the Lame parameter of the k th layer, g, = (,tk IP~+~, 
and q. = (ql, q2, q3) is the surface load. The matrices B(z) and A(z) are given in [2]. 

We can obtain the solution for a medium rigidly attached to an elastic half-space by letting 
the thickness of the lowest layer tend to =. By changing the system of coordinates to 
z* = zN -II, in the lowest layer and taking the limit, we get 

FN =O, FN-, = N-h,_,) - g,_,A”(O) 

Fk =B(-h,)-gkA(h,+,)+gkB(h,+,)F,-f,A(-h,+,), k=f,2,...,N-2 
z=zk-2C;=,hi+hk, k=l,2 ,..,, N-l 

Z = Z* -2Czi’hi, k= N 

a*hf++*L aj3[M-L] -iaN1 

A"(z)= af3[M-L] fi*M+a*L -ifiN, 

iaN iPN2 R I 

M = $3~k*fto-,z) + yf(o,z)], L = 4 02h* f(Q*Z) 

42 = $ hf(~l,,Zb v,f(~*,,z)1. 

R’_ 20, 
- L\” [-~*f@,z> + yfta,z)l, f(z) = ch(z)+ sh(z) = er 

A”=[y*-~*oIc~~], h*=a*+~*, y=h*-j$@ 

0; =PA#, e: =&,e;, e;=p,o*/pN, EN =(l-2v,)/(2-2v,) 

In particular, for a layer rigidly attached to the half-space (-CO < X, Y s =, z 6 ()), we obtain 
the following displacements: 
in the layer 

w(z) = [Atz + h, > - JNz + h, )F,-‘At-h, )IsocL;’ 

in the half-space 

w(z) =-A”(z t2h,)F,-‘A(-h,)q,p;‘, F, =B(-h,)-g,A”(O) 



6. NUMERICAL ANALYSIS OF THE PROBILEM 

Figurt: X shows the effect of coupling forces within the contact domain on the behnviaur of a 
punch in contact with I layer of thickness H= 0.5 and subjected to a force P2(~)=do-as(. The 
solid line corresponds to the problem with coupling (adhesion) within the contract domain, 
while the dashed hue corresponds to the problem ~~~hou~ friction. Xt citn be seen &WE Fig. 1 
that ~~~~~~~g forces result in a s&&Q smalfer ~~~~rnum ~~~~~~ernen~ of the punch as 
compared with the problem without friction. 

For syskms in which the thickness of the layer is comparable with the dimensions of the 
punch the, effect of coupling forces within the contact domain oh the vertical displacements of 
the punch turns out to be small. We observe that the basic patterns in the behavlour of the 
pmch rem&~ the same for media with mope complex p~~e~~es ~~~~e~~d me@. 

The time de~nde~ce of the angle of rotazion and the hor~~~~a~ ~~p~~~~~~~ RE the punch 
subjected to the moment M(t) = H(f) - H(t - 2) is shown in Fig. 2. Curve 1 corresponds to the 
horizontaX displacement and curve 2 to the angle of rotation of the punch. In the case when the 
punch is acted upon by a horizontal load the behaviour of u, and cp is similar to that shown in 
Fig. 2, but, the hori~~n~a~ displacement of the punch predo~~~tes~ All quantities are 
presented in diMeusi~~~ess form: the dis~~aceMe~~~ re‘ia&ve to t&e ba~f-~hic~~~~ a of &e 
punch, &he Zoad to &he rigidity p of the layer, and the time to ~~~~)*‘~~ Moreover, v= 0.3, 
c = 0.2 isr the coefficient of friction of the medium, and M = 1 is the mass of the punch. 

We wish to express out thanks to I, I. Vorovich for his interest and for useful remarks. 

Fig. 1, 

Fig. 2. 
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